컨테이너 리소스 관리
파드를 지정할 때, 컨테이너에 필요한 각 리소스의 양을 선택적으로 지정할 수 있다. 지정할 가장 일반적인 리소스는 CPU와 메모리(RAM) 그리고 다른 것들이 있다.
파드에서 컨테이너에 대한 리소스 요청(request) 을 지정하면, 스케줄러는 이 정보를 사용하여 파드가 배치될 노드를 결정한다. 컨테이너에 대한 리소스 제한(limit) 을 지정하면, kubelet은 실행 중인 컨테이너가 설정한 제한보다 많은 리소스를 사용할 수 없도록 해당 제한을 적용한다. 또한 kubelet은 컨테이너가 사용할 수 있도록 해당 시스템 리소스의 최소 요청 량을 예약한다.
요청 및 제한
파드가 실행 중인 노드에 사용 가능한 리소스가 충분하면, 컨테이너가 해당
리소스에 지정한 request
보다 더 많은 리소스를 사용할 수 있도록 허용된다.
그러나, 컨테이너는 리소스 limit
보다 더 많은 리소스를 사용할 수는 없다.
예를 들어, 컨테이너에 대해 256MiB의 memory
요청을 설정하고, 해당 컨테이너가
8GiB의 메모리를 가진 노드로 스케줄된 파드에 있고 다른 파드는 없는 경우, 컨테이너는 더 많은 RAM을
사용할 수 있다.
해당 컨테이너에 대해 4GiB의 memory
제한을 설정하면, kubelet(그리고
컨테이너 런타임)이 제한을 적용한다.
런타임은 컨테이너가 구성된 리소스 제한을 초과하여 사용하지 못하게 한다. 예를 들어,
컨테이너의 프로세스가 허용된 양보다 많은 메모리를 사용하려고 하면,
시스템 커널은 메모리 부족(out of memory, OOM) 오류와 함께 할당을 시도한 프로세스를
종료한다.
제한은 반응적(시스템이 위반을 감지한 후에 개입)으로 또는 강제적(시스템이 컨테이너가 제한을 초과하지 않도록 방지)으로 구현할 수 있다. 런타임마다 다른 방식으로 동일한 제약을 구현할 수 있다.
리소스 타입
CPU 와 메모리 는 각각 리소스 타입 이다. 리소스 타입에는 기본 단위가 있다. CPU는 컴퓨팅 처리를 나타내며 쿠버네티스 CPU 단위로 지정된다. 메모리는 바이트 단위로 지정된다. 쿠버네티스 v1.14 이상을 사용하는 경우, huge page 리소스를 지정할 수 있다. Huge page는 노드 커널이 기본 페이지 크기보다 훨씬 큰 메모리 블록을 할당하는 리눅스 관련 기능이다.
예를 들어, 기본 페이지 크기가 4KiB인 시스템에서, hugepages-2Mi: 80Mi
제한을
지정할 수 있다. 컨테이너가 40개 이상의 2MiB huge page(총 80MiB)를
할당하려고 하면 해당 할당이 실패한다.
hugepages-*
리소스를 오버커밋할 수 없다.
이것은 memory
및 cpu
리소스와는 다르다.
CPU와 메모리를 통칭하여 컴퓨트 리소스 또는 리소스 라고 한다. 컴퓨트 리소스는 요청, 할당 및 소비될 수 있는 측정 가능한 수량이다. 이것은 API 리소스와는 다르다. 파드 및 서비스와 같은 API 리소스는 쿠버네티스 API 서버를 통해 읽고 수정할 수 있는 오브젝트이다.
파드와 컨테이너의 리소스 요청 및 제한
파드의 각 컨테이너는 다음 중 하나 이상을 지정할 수 있다.
spec.containers[].resources.limits.cpu
spec.containers[].resources.limits.memory
spec.containers[].resources.limits.hugepages-<size>
spec.containers[].resources.requests.cpu
spec.containers[].resources.requests.memory
spec.containers[].resources.requests.hugepages-<size>
요청과 제한은 개별 컨테이너에서만 지정할 수 있지만, 파드 리소스 요청 및 제한에 대해 이야기하는 것이 편리하다. 특정 리소스 타입에 대한 파드 리소스 요청/제한 은 파드의 각 컨테이너에 대한 해당 타입의 리소스 요청/제한의 합이다.
쿠버네티스의 리소스 단위
CPU의 의미
CPU 리소스에 대한 제한 및 요청은 cpu 단위로 측정된다. 쿠버네티스의 CPU 1개는 클라우드 공급자용 vCPU/Core 1개 와 베어메탈 인텔 프로세서에서의 1개 하이퍼스레드 에 해당한다.
분수의 요청이 허용된다.
0.5
의 spec.containers[].resources.requests.cpu
요청을 가진
컨테이너는 CPU 1개를 요구하는 컨테이너의 절반만큼 CPU를 보장한다. 0.1
이라는 표현은
"백 밀리cpu"로 읽을 수 있는 100m
표현과 동일하다. 어떤 사람들은
"백 밀리코어"라고 말하는데, 같은 것을 의미하는 것으로 이해된다.
0.1
과 같이 소수점이 있는 요청은 API에 의해 100m
으로 변환되며,
1m
보다 더 정밀한 단위는 허용되지 않는다. 이러한 이유로,
100m
과 같은 형식이 선호될 수 있다.
CPU는 항상 절대 수량으로 요청되며, 상대적 수량은 아니다. 0.1은 단일 코어, 이중 코어 또는 48코어 시스템에서 동일한 양의 CPU이다.
메모리의 의미
memory
에 대한 제한 및 요청은 바이트 단위로 측정된다.
E, P, T, G, M, K와 같은 접미사 중 하나를 사용하여 메모리를
일반 정수 또는 고정 소수점 숫자로 표현할 수 있다. Ei, Pi, Ti, Gi, Mi, Ki와
같은 2의 거듭제곱을 사용할 수도 있다. 예를 들어, 다음은 대략 동일한 값을 나타낸다.
128974848, 129e6, 129M, 123Mi
다음은 예제이다. 다음 파드에는 두 개의 컨테이너가 있다. 각 컨테이너에는 0.25 cpu와 64MiB(226 바이트)의 메모리 요청이 있다. 각 컨테이너는 0.5 cpu와 128MiB 메모리로 제한된다. 파드에 0.5 cpu와 128 MiB 메모리, 1 cpu와 256MiB 메모리 제한이 있다고 말할 수 있다.
apiVersion: v1
kind: Pod
metadata:
name: frontend
spec:
containers:
- name: app
image: images.my-company.example/app:v4
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
- name: log-aggregator
image: images.my-company.example/log-aggregator:v6
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
리소스 요청이 포함된 파드를 스케줄링하는 방법
파드를 생성할 때, 쿠버네티스 스케줄러는 파드를 실행할 노드를 선택한다. 각 노드는 파드에 제공할 수 있는 CPU와 메모리 양과 같은 각 리소스 타입에 대해 최대 용량을 갖는다. 스케줄러는 각 리소스 타입마다 스케줄된 컨테이너의 리소스 요청 합계가 노드 용량보다 작도록 한다. 참고로 노드의 실제 메모리나 CPU 리소스 사용량은 매우 적지만, 용량 확인에 실패한 경우 스케줄러는 여전히 노드에 파드를 배치하지 않는다. 이는 리소스 사용량이 나중에 증가할 때, 예를 들어, 일일 요청 비율이 최대일 때 노드의 리소스 부족을 방지한다.
리소스 제한이 있는 파드가 실행되는 방법
kubelet은 파드의 컨테이너를 시작할 때, CPU와 메모리 제한을 컨테이너 런타임으로 전달한다.
도커를 사용하는 경우에는 다음과 같다.
-
spec.containers[].resources.requests.cpu
는 잠재적인 분수이며, 1024를 곱한 값인 코어 값으로 변환된다. 이 숫자 또는 2보다 큰 값은docker run
명령에서--cpu-shares
플래그의 값으로 사용된다. -
이
spec.containers[].resources.limits.cpu
값은 밀리코어 값으로 변환되고 100을 곱한 값이다. 그 결과 값은 컨테이너가 100ms마다 사용할 수 있는 마이크로초 단위의 총 CPU 시간이다. 이 간격 동안 컨테이너는 CPU 시간을 초과하여 사용할 수 없다.참고: 기본 쿼터 기간은 100ms이다. 최소 CPU 쿼터는 1ms이다. -
spec.containers[].resources.limits.memory
는 정수로 변환되어,docker run
명령에서--memory
플래그의 값으로 사용된다.
컨테이너가 메모리 제한을 초과하면, 컨테이너는 종료될 수 있다. 다시 시작할 수 있으면, 다른 타입의 런타임 오류와 마찬가지로, kubelet이 다시 시작한다.
컨테이너가 메모리 요청을 초과하면, 노드에 메모리가 부족할 때마다 파드가 축출될 수 있다.
컨테이너가 오랫동안 CPU 제한을 초과하는 것은 허용되거나 허용되지 않을 수 있다. 그러나, 과도한 CPU 사용으로 인해 종료되지는 않는다.
리소스 제한으로 인해 컨테이너를 스케줄할 수 없는지 또는 종료 중인지 확인하려면, 문제 해결 섹션을 참조한다.
컴퓨트 및 메모리 리소스 사용량 모니터링
파드의 리소스 사용량은 파드 상태의 일부로 보고된다.
클러스터에서 선택적인 모니터링 도구를 사용할 수 있다면, 메트릭 API에서 직접 또는 모니터링 도구에서 파드 리소스 사용량을 검색할 수 있다.
로컬 임시(ephemeral) 스토리지
Kubernetes v1.10 [beta]
노드에는 로컬에 연결된 쓰기 가능 장치 또는, 때로는 RAM에 의해 지원되는 로컬 임시 스토리지가 있다. "임시"는 내구성에 대한 장기간의 보증이 없음을 의미한다.
파드는 스크래치 공간, 캐싱 및 로그에 대해 임시 로컬 스토리지를 사용한다.
kubelet은 로컬 임시 스토리지를 사용하여 컨테이너에
emptyDir
볼륨을 마운트하기 위해 파드에 스크래치 공간을 제공할 수 있다.
kubelet은 이러한 종류의 스토리지를 사용하여 노드-레벨 컨테이너 로그, 컨테이너 이미지 및 실행 중인 컨테이너의 쓰기 가능 계층을 보유한다.
베타 기능에서, 쿠버네티스는 파드가 사용할 수 있는 임시 로컬 스토리지의 양을 추적, 예약 및 제한할 수 있도록 해준다.
로컬 임시 스토리지 구성
쿠버네티스는 노드에서 로컬 임시 스토리지를 구성하는 두 가지 방법을 지원한다.
이 구성에서, 모든 종류의 임시 로컬 데이터(emptyDir
볼륨,
쓰기 가능 계층, 컨테이너 이미지, 로그)를 하나의 파일시스템에 배치한다.
kubelet을 구성하는 가장 효과적인 방법은 이 파일시스템을 쿠버네티스(kubelet) 데이터 전용으로
하는 것이다.
kubelet은 또한 노드-레벨 컨테이너 로그를 작성하고 임시 로컬 스토리지와 유사하게 처리한다.
kubelet은 구성된 로그 디렉터리 내의 파일에 로그를 기록한다(기본적으로
/var/log
). 그리고 로컬에 저장된 다른 데이터에 대한 기본 디렉터리가 있다(기본적으로
/var/lib/kubelet
).
일반적으로, /var/lib/kubelet
와 /var/log
모두 시스템 루트 파일시스템에 위치하고,
그리고 kubelet은 이런 레이아웃을 염두에 두고 설계되었다.
노드는 쿠버네티스에서 사용하지 않는 다른 많은 파일시스템을 가질 수 있다.
사용하고 있는 노드에 실행 중인 파드에서 발생하는 임시 데이터를
위한 파일시스템을 가진다(로그와 emptyDir
볼륨). 이 파일시스템을
다른 데이터(예를 들어, 쿠버네티스와 관련없는 시스템 로그)를 위해 사용할 수 있다. 이 파일시스템은
루트 파일시스템일 수도 있다.
kubelet은 또한 노드-레벨 컨테이너 로그를 첫 번째 파일시스템에 기록하고, 임시 로컬 스토리지와 유사하게 처리한다.
또한 다른 논리 스토리지 장치가 지원하는 별도의 파일시스템을 사용한다. 이 구성에서, 컨테이너 이미지 계층과 쓰기 가능한 계층을 배치하도록 kubelet에 지시하는 디렉터리는 이 두 번째 파일시스템에 있다.
첫 번째 파일시스템에는 이미지 계층이나 쓰기 가능한 계층이 없다.
노드는 쿠버네티스에서 사용하지 않는 다른 많은 파일시스템을 가질 수 있다.
kubelet은 사용 중인 로컬 스토리지 양을 측정할 수 있다. 이것은 다음을 제공한다.
LocalStorageCapacityIsolation
기능 게이트(이 기능이 기본적으로 설정되어 있음)를 활성화하고,- 로컬 임시 스토리지에 대한 지원되는 구성 중 하나를 사용하여 노드를 설정한다.
다른 구성을 사용하는 경우, kubelet은 임시 로컬 스토리지에 대한 리소스 제한을 적용하지 않는다.
tmpfs
emptyDir 볼륨을 추적한다.
로컬 임시 스토리지에 대한 요청 및 제한 설정
임시-스토리지 를 사용하여 로컬 임시 저장소를 관리할 수 있다. 파드의 각 컨테이너는 다음 중 하나 이상을 지정할 수 있다.
spec.containers[].resources.limits.ephemeral-storage
spec.containers[].resources.requests.ephemeral-storage
ephemeral-storage
에 대한 제한 및 요청은 바이트 단위로 측정된다. E, P, T, G, M, K와
같은 접미사 중 하나를 사용하여 스토리지를 일반 정수 또는 고정 소수점 숫자로 표현할 수 있다.
Ei, Pi, Ti, Gi, Mi, Ki와 같은 2의 거듭제곱을 사용할 수도 있다.
예를 들어, 다음은 대략 동일한 값을 나타낸다.
128974848, 129e6, 129M, 123Mi
다음 예에서, 파드에 두 개의 컨테이너가 있다. 각 컨테이너에는 2GiB의 로컬 임시 스토리지 요청이 있다. 각 컨테이너에는 4GiB의 로컬 임시 스토리지 제한이 있다. 따라서, 파드는 4GiB의 로컬 임시 스토리지 요청과 8GiB 로컬 임시 스토리지 제한을 가진다.
apiVersion: v1
kind: Pod
metadata:
name: frontend
spec:
containers:
- name: app
image: images.my-company.example/app:v4
resources:
requests:
ephemeral-storage: "2Gi"
limits:
ephemeral-storage: "4Gi"
volumeMounts:
- name: ephemeral
mountPath: "/tmp"
- name: log-aggregator
image: images.my-company.example/log-aggregator:v6
resources:
requests:
ephemeral-storage: "2Gi"
limits:
ephemeral-storage: "4Gi"
volumeMounts:
- name: ephemeral
mountPath: "/tmp"
volumes:
- name: ephemeral
emptyDir: {}
임시-스토리지 요청이 있는 파드의 스케줄링 방법
파드를 생성할 때, 쿠버네티스 스케줄러는 파드를 실행할 노드를 선택한다. 각 노드에는 파드에 제공할 수 있는 최대 임시 스토리지 공간이 있다. 자세한 정보는, 노드 할당 가능을 참조한다.
스케줄러는 스케줄된 컨테이너의 리소스 요청 합계가 노드 용량보다 작도록 한다.
임시 스토리지 소비 관리
kubelet이 로컬 임시 스토리지를 리소스로 관리하는 경우, kubelet은 다음에서 스토리지 사용을 측정한다.
- tmpfs
emptyDir
볼륨을 제외한emptyDir
볼륨 - 노드-레벨 로그가 있는 디렉터리
- 쓰기 가능한 컨테이너 계층
허용하는 것보다 더 많은 임시 스토리지를 파드가 사용하는 경우, kubelet은 파드 축출을 트리거하는 축출 신호를 설정한다.
컨테이너-레벨 격리의 경우, 컨테이너의 쓰기 가능한 계층과 로그 사용량이 스토리지 제한을 초과하면, kubelet은 파드를 축출하도록 표시한다.
파드-레벨 격리에 대해 kubelet은 해당 파드의 컨테이너에 대한 제한을 합하여
전체 파드 스토리지 제한을 해결한다. 이 경우, 모든
컨테이너와 파드의 emptyDir
볼륨의 로컬 임시 스토리지 사용량 합계가
전체 파드 스토리지 제한을 초과하면, kubelet은 파드를 축출 대상으로
표시한다.
kubelet이 로컬 임시 스토리지를 측정하지 않는 경우, 로컬 스토리지 제한을 초과하는 파드는 로컬 스토리지 리소스 제한을 위반해도 축출되지 않는다.
그러나, 쓰기 가능한 컨테이너 계층, 노드-레벨 로그
또는 emptyDir
볼륨의 파일 시스템 공간이 부족하면, 로컬
스토리지가 부족하다고 노드 자체에 테인트되고
이로인해 특별히 이 테인트를 허용하지 않는 모든 파드를 축출하도록 트리거한다.
임시 로컬 스토리지에 대해 지원되는 구성을 참조한다.
kubelet은 파드 스토리지 사용을 측정하는 다양한 방법을 지원한다.
kubelet은 각 emptyDir
볼륨, 컨테이너 로그 디렉터리 및 쓰기 가능한 컨테이너 계층을
스캔하는 정기적인 스케줄 검사를 수행한다.
스캔은 사용된 공간의 양을 측정한다.
이 모드에서, kubelet은 삭제된 파일의 열린 파일 디스크립터를 추적하지 않는다.
여러분(또는 컨테이너)이 emptyDir
볼륨 안에 파일을 생성하면,
그 파일이 열리고, 파일이 열려있는 동안 파일을
삭제하면, 삭제된 파일의 inode는 해당 파일을 닫을 때까지
유지되지만 kubelet은 사용 중인 공간으로 분류하지 않는다.
Kubernetes v1.15 [alpha]
프로젝트 쿼터는 파일시스템에서 스토리지 사용을 관리하기 위한 운영체제 레벨의 기능이다. 쿠버네티스를 사용하면, 스토리지 사용을 모니터링하기 위해 프로젝트 쿼터를 사용할 수 있다. 노드에서 'emptyDir' 볼륨을 지원하는 파일시스템이 프로젝트 쿼터 지원을 제공하는지 확인한다. 예를 들어, XFS와 ext4fs는 프로젝트 쿼터를 지원한다.
쿠버네티스는 1048576
부터 프로젝트 ID를 사용한다. 사용 중인 ID는
/etc/projects
와 /etc/projid
에 등록되어 있다. 이 범위의 프로젝트 ID가
시스템에서 다른 목적으로 사용되는 경우, 쿠버네티스가
이를 사용하지 않도록 해당 프로젝트 ID를 /etc/projects
와 /etc/projid
에
등록해야 한다.
쿼터는 디렉터리 검색보다 빠르고 정확하다. 디렉터리가 프로젝트에 할당되면, 디렉터리 아래에 생성된 모든 파일이 해당 프로젝트에 생성되며, 커널은 해당 프로젝트의 파일에서 사용 중인 블록 수를 추적하기만 하면 된다. 파일이 생성되고 삭제되었지만, 열린 파일 디스크립터가 있으면, 계속 공간을 소비한다. 쿼터 추적은 공간을 정확하게 기록하는 반면 디렉터리 스캔은 삭제된 파일이 사용한 스토리지를 간과한다.
프로젝트 쿼터를 사용하려면, 다음을 수행해야 한다.
-
kubelet 구성의
featureGates
필드 또는--feature-gates
커맨드 라인 플래그를 사용하여LocalStorageCapacityIsolationFSQuotaMonitoring=true
기능 게이트를 활성화한다. -
루트 파일시스템(또는 선택적인 런타임 파일시스템)에 프로젝트 쿼터가 활성화되어 있는지 확인한다. 모든 XFS 파일시스템은 프로젝트 쿼터를 지원한다. ext4 파일시스템의 경우, 파일시스템이 마운트되지 않은 상태에서 프로젝트 쿼터 추적 기능을 활성화해야 한다.
# ext4인 /dev/block-device가 마운트되지 않은 경우 sudo tune2fs -O project -Q prjquota /dev/block-device
-
루트 파일시스템(또는 선택적인 런타임 파일시스템)은 프로젝트 쿼터를 활성화한 상태에서 마운트해야 힌다. XFS와 ext4fs 모두에서, 마운트 옵션의 이름은
prjquota
이다.
확장된 리소스
확장된 리소스는 kubernetes.io
도메인 외부의 전체 주소(fully-qualified)
리소스 이름이다. 쿠버네티스에 내장되지 않은 리소스를 클러스터 운영자가 알리고
사용자는 사용할 수 있다.
확장된 리소스를 사용하려면 두 단계가 필요한다. 먼저, 클러스터 운영자는 확장된 리소스를 알려야 한다. 둘째, 사용자는 파드의 확장된 리소스를 요청해야 한다.
확장된 리소스 관리
노드-레벨의 확장된 리소스
노드-레벨의 확장된 리소스는 노드에 연결된다.
장치 플러그인 관리 리소스
각 노드에서 장치 플러그인 관리 리소스를 알리는 방법은 장치 플러그인을 참조한다.
기타 리소스
새로운 노드-레벨의 확장된 리소스를 알리기 위해, 클러스터 운영자는
API 서버에 PATCH
HTTP 요청을 제출하여 클러스터의
노드에 대해 status.capacity
에서 사용할 수 있는 수량을 지정할 수 있다. 이 작업
후에는, 노드의 status.capacity
에 새로운 리소스가 포함된다. 이
status.allocatable
필드는 kubelet에 의해 비동기적으로 새로운
리소스로 자동 업데이트된다. 참고로 스케줄러가 파드 적합성을 평가할 때 노드
status.allocatable
값을 사용하므로, 노드 용량을
새 리소스로 패치하는 것과 해당 노드에서 리소스를 스케줄하도록 요청하는 첫 번째 파드
사이에 약간의 지연이 있을 수 있다.
예제:
다음은 curl
을 사용하여 마스터가 k8s-master
인 노드 k8s-node-1
에
5개의 "example.com/foo" 리소스를 알리는 HTTP 요청을 구성하는 방법을
보여주는 예이다.
curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]' \
http://k8s-master:8080/api/v1/nodes/k8s-node-1/status
~1
은 패치 경로에서 문자 /
의
인코딩이다. JSON-Patch의 작업 경로 값은
JSON-Pointer로 해석된다. 더 자세한 내용은,
IETF RFC 6901, 섹션 3을 참조한다.
클러스터-레벨의 확장된 리소스
클러스터-레벨의 확장된 리소스는 노드에 연결되지 않는다. 이들은 일반적으로 리소스 소비와 리소스 쿼터를 처리하는 스케줄러 익스텐더(extender)에 의해 관리된다.
스케줄러 정책 구성에서 스케줄러 익스텐더가 처리하는 확장된 리소스를 지정할 수 있다.
예제:
스케줄러 정책에 대한 다음의 구성은 클러스터-레벨의 확장된 리소스 "example.com/foo"가 스케줄러 익스텐더에 의해 처리됨을 나타낸다.
- 파드가 "example.com/foo"를 요청하는 경우에만 스케줄러가 파드를 스케줄러 익스텐더로 보낸다.
- 이
ignoredByScheduler
필드는 스케줄러가PodFitsResources
속성에서 "example.com/foo" 리소스를 확인하지 않도록 지정한다.
{
"kind": "Policy",
"apiVersion": "v1",
"extenders": [
{
"urlPrefix":"<extender-endpoint>",
"bindVerb": "bind",
"managedResources": [
{
"name": "example.com/foo",
"ignoredByScheduler": true
}
]
}
]
}
확장된 리소스 소비
사용자는 CPU와 메모리 같은 파드 스펙의 확장된 리소스를 사용할 수 있다. 스케줄러는 리소스 어카운팅(resource accounting)을 관리하여 사용 가능한 양보다 많은 양의 리소스가 여러 파드에 동시에 할당되지 않도록 한다.
API 서버는 확장된 리소스의 수량을 정수로 제한한다.
유효한 수량의 예로는 3
, 3000m
그리고 3Ki
를 들 수 있다. 유효하지 않은
수량의 예는 0.5
와 1500m
이다.
kubernetes.io
이외의 모든 도메인 이름 접두사를 사용할 수 있다.
파드에서 확장된 리소스를 사용하려면, 컨테이너 사양에서 spec.containers[].resources.limits
맵에 리소스 이름을 키로 포함한다.
파드는 CPU, 메모리 및 확장된 리소스를 포함하여 모든 리소스 요청이
충족되는 경우에만 예약된다. 리소스 요청을 충족할 수 없다면
파드는 PENDING
상태를 유지한다.
예제:
아래의 파드는 2개의 CPU와 1개의 "example.com/foo"(확장된 리소스)를 요청한다.
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-container
image: myimage
resources:
requests:
cpu: 2
example.com/foo: 1
limits:
example.com/foo: 1
PID 제한
프로세스 ID(PID) 제한은 kubelet의 구성에 대해 주어진 파드가 사용할 수 있는 PID 수를 제한할 수 있도록 허용한다. 자세한 내용은 Pid 제한을 참고한다.
문제 해결
내 파드가 failedScheduling 이벤트 메시지로 보류 중이다
파드가 배치될 수 있는 노드를 스케줄러가 찾을 수 없으면, 노드를 찾을 수 있을 때까지 파드는 스케줄되지 않은 상태로 유지한다. 스케줄러가 다음과 같이 파드의 위치를 찾지 못하면 이벤트가 생성된다.
kubectl describe pod frontend | grep -A 3 Events
Events:
FirstSeen LastSeen Count From Subobject PathReason Message
36s 5s 6 {scheduler } FailedScheduling Failed for reason PodExceedsFreeCPU and possibly others
위의 예에서, 노드의 CPU 리소스가 충분하지 않아 이름이 "frontend"인 파드를 스케줄하지 못했다. 비슷한 메시지로 메모리 부족(PodExceedsFreeMemory)으로 인한 장애도 알릴 수 있다. 일반적으로, 파드가 이 타입의 메시지로 보류 중인 경우, 몇 가지 시도해 볼 것들이 있다.
- 클러스터에 더 많은 노드를 추가한다.
- 불필요한 파드를 종료하여 보류 중인 파드를 위한 공간을 확보한다.
- 파드가 모든 노드보다 크지 않은지 확인한다. 예를 들어, 모든
노드의 용량이
cpu: 1
인 경우,cpu: 1.1
요청이 있는 파드는 절대 스케줄되지 않는다.
kubectl describe nodes
명령으로 노드 용량과 할당된 양을
확인할 수 있다. 예를 들면, 다음과 같다.
kubectl describe nodes e2e-test-node-pool-4lw4
Name: e2e-test-node-pool-4lw4
[ ... 명확하게 하기 위해 라인들을 제거함 ...]
Capacity:
cpu: 2
memory: 7679792Ki
pods: 110
Allocatable:
cpu: 1800m
memory: 7474992Ki
pods: 110
[ ... 명확하게 하기 위해 라인들을 제거함 ...]
Non-terminated Pods: (5 in total)
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits
--------- ---- ------------ ---------- --------------- -------------
kube-system fluentd-gcp-v1.38-28bv1 100m (5%) 0 (0%) 200Mi (2%) 200Mi (2%)
kube-system kube-dns-3297075139-61lj3 260m (13%) 0 (0%) 100Mi (1%) 170Mi (2%)
kube-system kube-proxy-e2e-test-... 100m (5%) 0 (0%) 0 (0%) 0 (0%)
kube-system monitoring-influxdb-grafana-v4-z1m12 200m (10%) 200m (10%) 600Mi (8%) 600Mi (8%)
kube-system node-problem-detector-v0.1-fj7m3 20m (1%) 200m (10%) 20Mi (0%) 100Mi (1%)
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
CPU Requests CPU Limits Memory Requests Memory Limits
------------ ---------- --------------- -------------
680m (34%) 400m (20%) 920Mi (11%) 1070Mi (13%)
위의 출력에서, 파드가 1120m 이상의 CPU 또는 6.23Gi의 메모리를 요청하는 것은 노드에 맞지 않음을 알 수 있다.
Pods
섹션을 살펴보면, 파드가 노드에서 공간을 차지하는 것을
볼 수 있다.
시스템 데몬이 사용 가능한 리소스의 일부를 사용하기 때문에, 파드에
사용 가능한 리소스의 양이 노드 용량보다 적다. allocatable
필드
NodeStatus는
파드가 사용할 수 있는 리소스의 양을 제공한다. 자세한 정보는
노드 할당 가능 리소스를 참조한다.
리소스 쿼터 기능은 소비될 수 있는 리소스의 총량을 제한하도록 구성할 수 있다. 네임스페이스와 함께 사용하면, 한 팀이 모든 리소스를 사용하는 경우를 방지할 수 있다.
내 컨테이너가 종료되었다
리소스가 부족하여 컨테이너가 종료될 수 있다. 리소스
제한에 도달하여 컨테이너가 종료되고 있는지 확인하려면,
관심있는 파드에 대해 kubectl describe pod
를 호출한다.
kubectl describe pod simmemleak-hra99
Name: simmemleak-hra99
Namespace: default
Image(s): saadali/simmemleak
Node: kubernetes-node-tf0f/10.240.216.66
Labels: name=simmemleak
Status: Running
Reason:
Message:
IP: 10.244.2.75
Replication Controllers: simmemleak (1/1 replicas created)
Containers:
simmemleak:
Image: saadali/simmemleak
Limits:
cpu: 100m
memory: 50Mi
State: Running
Started: Tue, 07 Jul 2015 12:54:41 -0700
Last Termination State: Terminated
Exit Code: 1
Started: Fri, 07 Jul 2015 12:54:30 -0700
Finished: Fri, 07 Jul 2015 12:54:33 -0700
Ready: False
Restart Count: 5
Conditions:
Type Status
Ready False
Events:
FirstSeen LastSeen Count From SubobjectPath Reason Message
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {scheduler } scheduled Successfully assigned simmemleak-hra99 to kubernetes-node-tf0f
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD pulled Pod container image "k8s.gcr.io/pause:0.8.0" already present on machine
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD created Created with docker id 6a41280f516d
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD started Started with docker id 6a41280f516d
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} spec.containers{simmemleak} created Created with docker id 87348f12526a
앞의 예제에서, Restart Count: 5
표시는 파드의 simmemleak
컨테이너가 종료되고 5번 다시 시작되었음을 나타낸다.
이전에 종료된 컨테이너의 상태를 가져오기 위해 -o go-template=...
옵션을 사용해서
kubectl get pod
를 호출할 수 있다.
kubectl get pod -o go-template='{{range.status.containerStatuses}}{{"Container Name: "}}{{.name}}{{"\r\nLastState: "}}{{.lastState}}{{end}}' simmemleak-hra99
Container Name: simmemleak
LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]
컨테이너가 reason:OOM Killed
(OOM
은 메모리 부족(Out Of Memory)의 약자) 때문에 종료된 것을 알 수 있다.
다음 내용
- 컨테이너와 파드에 메모리 리소스를 할당하는 핸즈온 경험을 해보자.
- 컨테이너와 파드에 CPU 리소스를 할당하는 핸즈온 경험을 해보자.
- 요청과 제한의 차이점에 대한 자세한 내용은, 리소스 QoS를 참조한다.
- 컨테이너 API 레퍼런스 읽어보기
- ResourceRequirements API 레퍼런스 읽어보기
- XFS의 프로젝트 쿼터에 대해 읽어보기
- kube-scheduler 정책 레퍼런스 (v1)에 대해 더 읽어보기